

Desert Sky Observer

Volume 34

Antelope Valley Astronomy Club Newsletter

April 2014

Up-Coming Events

April 4: Scouts @ Devils Punchbowl
April 4: Public Night at the SAGE
April 5: Prime Desert Moon Walk

April 9: Board Meeting
April 11: Club Meeting*
April 26-27: Poppy Festival

President

Frank Moore

Yes folks, I know, "Here he goes talking about the weather again."

Rose and I have just finished unloading the cars after the Messier Marathon at Saddleback Butte State Park yesterday. Yes...CARS, plural, as it took two cars to haul two telescopes and all of the picnic supplies to the event. Of course, the irony is that due to the weather, we never set the telescopes up.

Some of you may have been scared away by the weather, and while we had some winds and later the clouds closed in on the star party, we still had a fantastic barbeque with the most succulent and tasty burgers and dogs. (OK...I'm biased because I was the BBQ chef.) Half a dozen members of the Local Group Astronomy Club, out of the Santa Clarita Valley, also came to the event as our invited guests and we were able to discuss future events with both clubs.

Since the event was also planned as a public star party for the Save Saddleback Butte State Park Committee, we also had visits from Margaret Rhyne of the Poppy Reserve Mojave Desert Interpretive Association (PRMDIA), and Mark Faul who is a retired state park ranger who is affiliated with half a dozen Kern and Los Angeles county nature and open space groups. With the skies clouded over, we really had the time to talk and lay the groundwork for a few stargazing sites we may be able to try in the future. One is an equestrian staging center on the eastern side of the Saddleback Butte, but within the state park, which means we would be more shielded from the lights of Lancaster/Palmdale and Lake Los Angeles. We plan on making an appointment to go look at it sometime in the near future.

The weather scared most of the public outreach crowd away but we had a few carloads show up and, with Matt Leone's 16" dob set up we were able to share views of Jupiter, the Orion Nebula, the Andromeda Galaxy, and a few other deep sky objects with them through holes in the clouds. By the time Rose and I got home to Tehachapi, it was just beginning to rain so it seems we left just in time. We barely had time to get the cars unloaded before it started getting wet outside.

^{*} Monthly meetings are held at the S.A.G.E. Planetarium on the Cactus School campus in Palmdale, the second Friday of each month. The meeting location is at the northeast corner of Avenue R and 20th Street East. Meetings start at 7 p.m. and are open to the public. *Please note that food and drink are not allowed in the planetarium*

We have some big events coming up in April so keep your calendars open for stargazing adventures. We have an education and outreach event for Brownie Scouts at Devils Punchbowl on April 4. We will be having an event in the parking lot of the SAGE Planetarium for the lunar eclipse on the the night of April 14 and into the morning of April 15. Of course, we have our biggest outreach of the year, the California Poppy Festival on April 26 and 27, where we will be having our booth and solar outreach both days. We always need help at this event so volunteer if you can only spend a few hours manning the booth, helping with the telescopes, and sharing your enthusiasm for astronomy with the public. There really isn't much that's more satisfying than the, "Oooh", "Ahhh" and "Oh my gosh" you get when you share the sun, moon, planets, and stars with the public. Plus, they'll think you're really smart. (Fooled 'em again didn't we.)

We'll have detailed announcements about these events as they get closer.

Remember, help preserve dark skies. Turn out unnecessary outdoor lights, use dark sky friendly fixtures, and consciously think about your "light footprint". If you're aware of what you do, you can always make a difference.

Vice President

Rose Moore

Spring is here, and that means warmer weather is coming!

We have speakers lined up till July. Our next speaker for April's meeting is Dr. Luisa Rebull, research astronomer/scientist from the Spitzer Science Center. Topic to be announced. Also coming up is Chris Estrada for May, topic will be on his double star

research at Mt. Wilson. And Jeff Lagrange joins us in June for a talk on the Goldstone Radio Telescope, and Diana Darus from JPL for July!

Our summer picnic will be at Brite Lake again this year, on Saturday August 23rd! We'll be posting a potluck sign up sheet and more info as we get closer to summer. After our picnic, we will be having a public star party. Our Christmas Party will be on Saturday December 6th, at Julianni's Restaurant in Lancaster. This will be a buffet this year, and menu and other info to be announced.

Check out Don's announcements below, and come on out to support your club! We guarantee you will also have fun while you're participating!!

Clear skies,

Rose

Director of Community Development

Don Bryden

Has everyone recovered from the Messier Marathon? I hope so for we have several outreach events coming up! I hope this reaches you before the 4th because that weekend will be a busy one. First, come out to Devil's Punchbowl and share you view of the night sky with the Acton Girl Scouts. Ranger Dave Numer will have the visitor's center open

late and we'll get together around 7pm for a short discussion of the constellations then as night falls we'll move to the scopes and take a look.

Of course the next night is another Prime Desert Moonwalk. We've had good attendance so far this year so I expect a big crowd if the skies are nice. Come out to set up between 7 to 7:30 and the walk will start around 8pm.

You won't want to miss this next event as the night of the 14th and into the morning of the 15th we'll meet at the SAGE Planetarium for the first of two total lunar eclipses for 2014. Jeremy will have the SAGE open for viewing and comfort and we'll have a number of scopes set up out in the parking lot to watch the event. By the way, on the 14th before the eclipse, Mars will be just past opposition and at its closest approach to the Earth since 2008 (no, it will NOT be as big as the moon!). Still, it will look as big and as bright as ever so come early to see Mars and stay late for the eclipse.

Finally, it's almost time for the Annual Antelope Valley Poppy Festival! Stop by our booth and say hi or come and help out by running the solar scopes, Sunspotter or running the booth. If you want to help set up or if you have a scope to bring out please let me or Rose know and we'll be sure to get you a badge and parking pass. We'll be there all weekend from April 26th through the 27th so come on out!

Space Place

Old Tool, New Use: GPS and the Terrestrial Reference Frame

By Alex H. Kasprak

Flying over 1300 kilometers above Earth, the Jason 2 satellite knows its distance from the ocean down to a matter of centimeters, allowing for the creation of detailed maps of the ocean's surface. This information is invaluable to oceanographers and climate scientists. By understanding the ocean's complex topography—its barely perceptible hills and troughs—these scientists can monitor the pace of sea level rise, unravel the intricacies of ocean currents, and project the effects of future climate change.

But these measurements would be useless if there were not some frame of reference to put them in context. A terrestrial reference frame, ratified by an international group of scientists, serves that purpose. "It's a lot like air," says JPL scientist Jan Weiss. "It's all around us and is vitally important, but people don't really think about it." Creating such a frame of reference is more of a challenge than you might think, though. No point on the surface of Earth is truly fixed.

To create a terrestrial reference frame, you need to know the distance between as many points as possible. Two methods help achieve that goal. Very-long baseline interferometry uses multiple radio antennas to monitor the signal from something very far away in space, like a quasar. The distance between the antennas can be calculated based on tiny changes in the time it takes the signal to reach them. Satellite

4

Desert Sky Observer

laser ranging, the second method, bounces lasers off of satellites and measures the two-way travel time to calculate distance between ground stations.

Artist's interpretation of the Jason 2 satellite. To do its job properly, satellites like Jason 2 require as accurate a terrestrial reference frame as possible. Image courtesy: NASA/JPL-Caltech.

Weiss and his colleagues would like to add a third method into the mix—GPS. At the moment, GPS measurements are used only to tie together the points created by very long baseline interferometry and satellite laser ranging together, not to directly calculate a terrestrial reference frame.

"There hasn't been a whole lot of serious effort to include GPS directly," says Weiss. His goal is to show that GPS can be used to create a terrestrial reference frame on its own. "The thing about GPS that's different from very-long baseline interferometry and satellite laser ranging is that you don't need complex and expensive infrastructure and can deploy many stations all around the world."

Feeding GPS data directly into the calculation of a terrestrial reference frame could lead to an even more accurate and cost effective way to reference points

geospatially. This could be good news for missions like Jason 2. Slight errors in the terrestrial reference frame can create significant errors where precise measurements are required. GPS stations could prove to be a vital and untapped resource in the quest to create the most accurate terrestrial reference frame possible. "The thing about GPS," says Weiss, "is that you are just so data rich when compared to these other techniques."

You can learn more about NASA's efforts to create an accurate terrestrial reference frame here: http://space-geodesy.nasa.gov/.

Kids can learn all about GPS by visiting http://spaceplace.nasa.gov/gps and watching a fun animation about finding pizza here: http://spaceplace.nasa.gov/gps-pizza.

Astrophoto of The Month

2007 Lunar Eclipse by Don Bryden

Composite of images taken from first contact to last with a Nikon D300 piggybacked on a Schaefer Mount.

April Sky Data

First Qtr Full Last Qtr New Apr 7 Apr 15 Apr 22 Apr 28

Best time for deep sky observing this month: April 20 through April 30

Mercury might just be spotted low above the horizon near sunrise at the beginning of the month but, as it passes through superior conjunction with the Sun on the 26th of April will not be visible for the remainder of the month.

As April begins, **Venus** rises just before the onset of morning twilight but is still at less than 10 degrees elevation at sunrise. But, shining with a magnitude of -4.4, will still be easy to spot given a good low eastern horizon. During the month it moves nearer to the Sun, its magnitude drops to -4.2 whilst its angular diameter shrinks from 22 to 17 arc seconds.

Mars, lying in Virgo, reaches opposition on April 8th, so is visible from dusk to dawn and is due south around 2am at the start of the month and ~11pm at its end. Its brightness reaches a maximum of magnitide -1.5 in the second week of the month - matching that of Sirius. Mars is actually closest to us on the 14th April whern its angular size reaches 15.16 arc seconds and it remains greater than 14.5 arc seconds throughout the remainder of the month.

This month **Jupiter** is a little past its best and should be viewed soon after night fall when it is closest to the meridian and so highest in the sky. Shining at magnitude -2.2 (falling to magnitude -2 during the month) it is visible for much of the evening.

Saturn rises at about 10:30 at the start of the month and at about 8:30 pm at its end. Lying in Libra, it is shining with a magnitude of +0.1 by late April. The rings (with a diameter of ~40 arc seconds) have now opened to around 22 degrees from the line of sight so presenting a magnificant view.

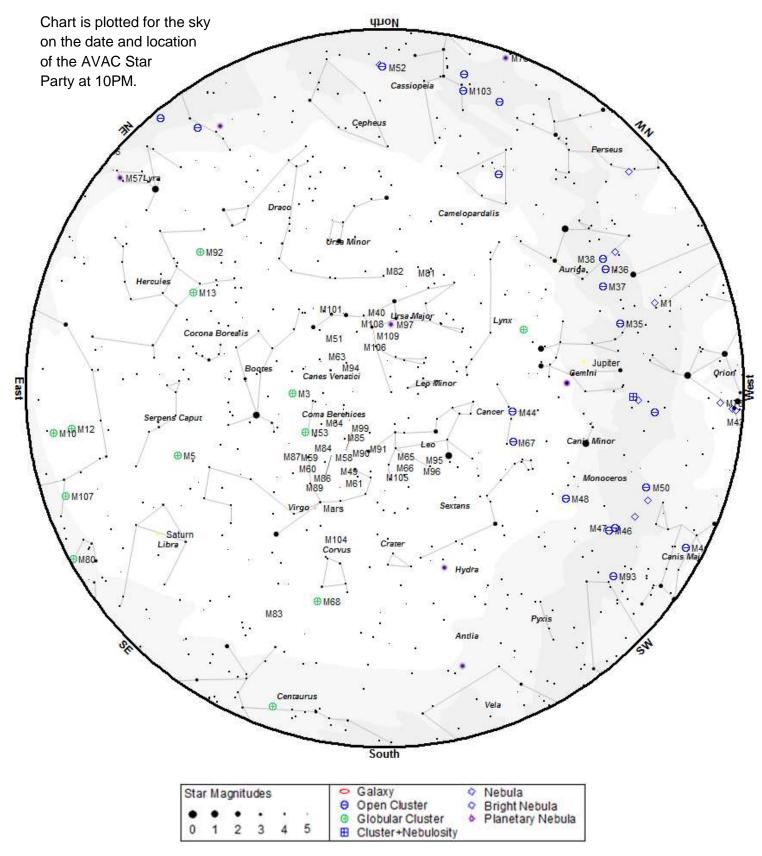
The Lyrid **meteor shower** lasts from about April 16 to 25. Lyrid meteors tend to be bright and often leave trails. About 10-20 meteors per hour can be expected at their peak. The radiant for this shower is near the bright star Vega in the constellation Lyra which rises in the northeast at about 10 p.m. on April evenings. The peak morning is April 22, but you might also see meteors before and after that date.

Sun and Moon Rise and Set

Date	Moonrise	Moonset	Sunrise	Sunset
4/1/2014	07:50	21:34	06:38	19:13
4/5/2014	10:53	00:20	06:33	19:16
4/10/2014	16:18	04:41	07:26	20:20
4/15/2014	21:07	07:31	07:19	20:24
4/20/2014	01:07	11:43	07:13	20:28
4/25/2014	04:49	17:07	07:07	20:32
4/30/2014	08:08	22:16	07:02	20:36

Planet Data

		Apr 1		
	Rise	Transit	Set	Mag
Mercury	05:48	11:41	17:32	-0.2
Venus	04:27	10:02	15:36	-4.3
Mars	19:42	01:32	07:22	-1.4
Jupiter	11:40	19:00	02:17	-2.2
Saturn	22:10	03:32	08:53	0.3


Apr 15

	Rise	Transit	Set	Mag
Mercury	05:54	12:13	18:34	-1.0
Venus	04:19	10:05	15:52	-4.2
Mars	18:22	00:17	06:11	-1.4
Jupiter	10:51	18:11	01:28	-2.2
Saturn	21:11	02:33	07:56	0.2

Apr 31

	Rise	Transit	Set	Mag
Mercury	06:14	13:10	20:09	-1.8
Venus	04:07	10:10	16:11	-4.1
Mars	17:01	22:59	04:58	-1.2
Jupiter	10:02	17:21	00:37	-2.1
Saturn	20:07	01:30	06:53	0.1

Planet, Sun, and Moon data calculated for local time at Lancaster, CA

To use the chart, go outside within an hour or so of the time listed and hold it up to the sky. Turn the chart so the direction you are looking is at the bottom of the chart. If you are looking to the south then have 'South horizon' at the lower edge.

Suggested Observing List

The list below contains objects that will be visible on the night of the AVAC Star Party. The list is sorted by the best time to observe the object. The difficulty column describes how difficult it is to observe the object from the current location on a perfect night in a 6 inch Newtonian telescope.

ID	Cls	Con	RA 2000	Dec 2000	Mag	Begin	Best	End	Difficulty
NGC 2477	Open	Pup	07h52m10.0s	-38°31'48"	5.7	20:40	20:50	21:04	easy
NGC 2451	Open	Pup	07h45m23.0s	-37°57'21"	3.7	20:40	20:50	21:04	easy
NGC 2546	Open	Pup	08h12m15.0s	-37°35'42"	5.2	20:39	20:54	21:24	difficult
M 41	Open	CMa	06h46m01.0s	-20°45'24"	5.0	20:44	20:55	21:10	easy
NGC 2439	Open	Pup	07h40m45.0s	-31°41'36"	7.1	20:42	20:55	21:14	detectable
M 93	Open	Pup	07h44m30.0s	-23°51'24"	6.5	20:43	20:59	21:39	easy
NGC 3228	Open	Vel	10h21m22.0s	-51°43'42"	6.4	20:37	20:59	21:39	challenging
NGC 2571	Open	Pup	08h18m56.0s	-29°45'00"	7.4	20:44	20:59	21:38	detectable
NGC 2360	Open	CMa	07h17m43.0s	-15°38'30"	9.1	20:43	21:01	21:45	challenging
M 50	Open	Mon	07h02m42.0s	-08°23'00"	7.2	20:47	21:01	21:34	detectable
NGC 2440	PNe	Pup	07h41m55.4s	-18°12'31"	11.5	20:49	21:01	21:25	difficult
NGC 2353	Open	Mon	07h14m30.0s	-10°16'00"	5.2	20:42	21:02	21:53	easy
NGC 2423	Open	Pup	07h37m06.0s	-13°52'18"	7.0	20:45	21:02	21:48	easy
M 46	Open	Pup	07h41m46.0s	-14°48'36"	6.6	20:46	21:02	21:42	detectable
M 47	Open	Pup	07h36m35.0s	-14°29'00"	4.3	20:43	21:03	22:02	obvious
NGC 2237	Neb	Mon	06h32m02.0s	+04°59'10"	5.5	20:44	21:03	21:53	challenging
NGC 2301	Open	Mon	06h51m45.0s	+00°27'36"	6.3	20:46	21:03	21:51	easy
NGC 2506	Open	Mon	08h00m01.0s	-10°46'12"	8.9	20:52	21:04	21:18	difficult
NGC 3201	Glob	Vel	10h17m37.0s	-46°24'42"	6.9	20:41	21:04	22:03	not visible
NGC 2264	Open	Mon	06h40m58.0s	+09°53'42"	4.1	20:45	21:05	21:15	easy
NGC 2129	Open	Gem	06h01m07.0s	+23°19'20"	7.0	20:44	21:05	21:08	obvious
NGC 3132	PNe	Vel	10h07m01.8s	-40°26'11"	8.2	20:40	21:05	22:25	easy
NGC 3132	PNe	Vel	10h07m01.8s	-40°26'11"	8.2	20:40	21:05	22:25	easy
M 36	Open	Aur	05h36m18.0s	+34°08'24"	6.5	20:46	21:06	21:06	easy
M 35	Open	Gem	06h09m00.0s	+24°21'00"	5.6	20:48	21:06	21:18	easy
NGC 2175	Open	Ori	06h09m39.0s	+20°29'12"	6.8	20:50	21:06	21:10	detectable
M 37	Open	Aur	05h52m18.0s	+32°33'12"	6.2	20:47	21:07	21:21	easy
NGC 2355	Open	Gem	07h16m59.0s	+13°45'00"	9.7	20:53	21:07	21:41	difficult
NGC 1502	Open	Cam	04h07m50.0s	+62°19'54"	4.1	20:40	21:08	23:40	obvious
NGC 2392	PNe	Gem	07h29m10.8s	+20°54'42"	8.6	20:41	21:08	22:30	obvious
NGC 2393	Gal	Gem	07h30m04.6s	+34°01'40"	14.6	20:44	21:09	23:00	not visible
M 67	Open	Cnc	08h51m18.0s	+11°48'00"	7.4	20:50	21:11	22:38	detectable
M 44	Open	Cnc	08h40m24.0s	+19°40'00"	3.9	20:45	21:12	23:32	easy
NGC 3242	PNe	Hya	10h24m46.1s	-18°38'32"	8.6	20:37	21:15	22:52	obvious
NGC 3227	Gal	Leo	10h23m30.6s	+19°51'54"	11.5	20:49	21:20	23:59	difficult
M 82	Gal	UMa	09h55m52.4s	+69°40'47"	9.0	20:48	21:22	02:33	detectable
M 81	Gal	UMa	09h55m33.1s	+69°03'56"	7.8	20:48	21:22	02:14	detectable
M 97	PNe	UMa	11h14m47.7s	+55°01'09"	9.7	20:48	21:47	02:07	detectable

Describing Observer					01 1 01				
ID	Cls	Con	RA 2000	Dec 2000	Mag	Begin	Best	End	Difficulty
M 65	Gal	Leo	11h18m55.7s	+13°05'32"	10.1	20:46	21:51	01:13	detectable
M 66	Gal	Leo	11h20m14.9s	+12°59'30"	9.7	20:47	21:52	01:13	detectable
M 106	Gal	CVn	12h18m57.6s	+47°18'13"	9.1	20:51	22:50	02:49	detectable
Col 256	Open	Com	12h25m06.0s	+26°06'00"	2.9	20:46	22:56	03:12	easy
M 84	Gal	Vir	12h25m03.9s	+12°53'12"	10.1	20:50	22:56	02:11	detectable
M 86	Gal	Vir	12h26m12.2s	+12°56'44"	9.8	20:53	22:57	01:55	detectable
M 49	Gal	Vir	12h29m46.8s	+08°00'01"	9.3	20:49	23:01	02:13	detectable
M 87	Gal	Vir	12h30m49.2s	+12°23'29"	9.6	20:50	23:03	02:17	detectable
NGC 4565	Gal	Com	12h36m20.8s	+25°59'15"	10.1	20:52	23:08	02:20	difficult
M 68	Glob	Hya	12h39m28.0s	-26°44'36"	7.3	21:12	23:11	01:12	detectable
M 104	Gal	Vir	12h39m59.3s	-11°37'22"	9.1	20:52	23:11	01:52	detectable
M 94	Gal	CVn	12h50m53.1s	+41°07'12"	8.7	20:47	23:22	03:45	detectable
M 64	Gal	Com	12h56m43.8s	+21°41'00"	9.3	20:50	23:28	03:10	detectable
NGC 5128	Gal	Cen	13h25m27.7s	-43°01'07"	7.8	22:26	23:57	01:26	challenging
NGC 5139	Glob	Cen	13h26m46.0s	-47°28'36"	3.9	23:27	23:58	00:29	challenging
NGC 5195	Gal	CVn	13h29m59.6s	+47°15'58"	10.5	20:54	00:01	03:58	detectable
M 51	Gal	CVn	13h29m52.3s	+47°11'40"	8.7	20:49	00:02	04:34	easy
M 83	Gal	Hya	13h37m00.8s	-29°51'56"	7.8	22:06	00:09	02:12	detectable
M 3	Glob	CVn	13h42m11.0s	+28°22'42"	6.3	20:51	00:13	04:18	easy
M 101	Gal	UMa	14h03m12.4s	+54°20'53"	8.4	21:00	00:34	04:30	detectable
NGC 5460	Open	Cen	14h07m27.0s	-48°20'36"	6.1	23:36	00:39	01:42	not visible
M 5	Glob	Ser	15h18m34.0s	+02°05'00"	5.7	22:26	01:49	04:46	easy
NGC 5897	Glob	Lib	15h17m24.0s	-21°00'36"	8.4	00:14	01:49	03:24	challenging
NGC 5986	Glob	Lup	15h46m03.0s	-37°47'12"	7.6	01:03	02:17	03:31	difficult
M 80	Glob	Sco	16h17m02.0s	-22°58'30"	7.3	01:36	02:48	03:58	detectable
M 13	Glob	Her	16h41m41.0s	+36°27'36"	5.8	22:41	03:12	04:53	easy
M 12	Glob	Oph	16h47m14.0s	-01°56'48"	6.1	23:56	03:18	04:53	easy
M 10	Glob	Oph	16h57m09.0s	-04°06'00"	6.6	00:36	03:28	04:49	detectable
M 92	Glob	Her	17h17m07.0s	+43°08'12"	6.5	23:09	03:47	04:52	easy
NGC 6543	PNe	Dra	17h58m33.4s	+66°37'59"	8.3	22:13	04:10	05:02	obvious

A.V.A.C. Information

Membership in the Antelope Valley Astronomy Club is open to any individual or family.

The Club has three categories of membership.

- Family membership at \$30.00 per year.
- Individual membership at \$25.00 per year.
- Junior membership at \$15.00 per year.

Membership entitles you to...

- Desert Sky Observer–monthly newsletter.
- The Reflector the publication of the Astronomical League.
- The A.V.A.C. Membership Manual.
- To borrow club equipment, books, videos and other items.

AVAC P.O. BOX 8545, LANCASTER, CA 93539-8545

Visit the Antelope Valley Astronomy Club website at www.avastronomyclub.org/

The Antelope Valley Astronomy Club, Inc. is a 501(c)(3) Non-Profit Corporation.

The A.V.A.C. is a Sustaining Member of The Astronomical League and the International Dark-Sky Association.

Board Members

President:

Frank Moore (661) 972-4775 president@avastronomyclub.org

Vice-President:

Rose Moore (661) 972-1953 vice-president@avastronomyclub.org

Secretary:

Pam Grove

secretary@avastronomyclub.org

Treasurer:

Virgina Reed (661) 824-3932 treasurer@avastronomyclub.org

Director of Community Development:

Don Bryden (661) 270-0627 community@avastronomyclub.org

Appointed Positions

Newsletter Editor:

Steve Trotta (661) 269-5428 newsletter@avastronomyclub.org

Equipment & Library:

Bill Grove

library@avastronomyclub.org

Club Historian:

Tom Koonce (661) 943-8200 history@avastronomyclub.org

Webmaster:

Steve Trotta (661) 269-5428 webmaster@avastronomyclub.org

Astronomical League Coordinator:

Don Bryden (661) 270-0627 al@avastronomyclub.org

Our Sponsors

Thank you to our sponsors for your generous support!

Cosmos Level Sponsors

Woodland Hills Camera

5348 Topanga Canyon Blvd., Woodland Hills 888-427-8766. www.telescopes.net

Galaxy Level Sponsors

Al's Vacuum and Sewing

904 West Lancaster Blvd., Lancaster (661) 948-1521